
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

Zerg Rush Hour: Simulating Swarms for StarCraft 2 Cinematics

Matt Cordner∗ Bill La Barge†

Blizzard Entertainment

1 Introduction

In Starcraft 2: Heart of the Swarm’s introductory cinematic, tens
of thousands of alien creatures known as the Zerg descend upon
and infest a human city. To animate them all, a procedural particle-
based crowd system was created to simulate their movement and
behavior. Artist-friendly controls direct the swarm to move, attack,
climb, and leap using volume primitives in a lightweight implemen-
tation, providing fast turnaround for modifying and executing new
iterations.

2 Fast Simulations Using Particles

The Zerglings were required to move through the city in an insect-
like swarm, crawling over each other and around obstacles in their
path. They needed to avoid certain areas, navigate around corners,
attack targets, and react to explosions. Fast simulations and intu-
itive controls were also desired.

We began with a simple Houdini particle setup and created a single
VEX node to implement most of the swarming behavior. The VEX
code relied on point cloud methods, volumes, and a zstate variable
to determine each individual Zerg creature’s movement capabili-
ties and desired actions. Some examples are whether the creature
was climbing, scrambling over other Zerglings, attacking, being
crushed, blocked, overcrowded, or had enough support to propel
forward, and in which direction.

Once a target velocity vector was determined, a simple algorithm
adapted from Kück’s bubbles simulation was applied. In this
method, the total force acting on the bubble is a summation of re-
pulsive and attractive forces, friction, and gravity.

Vi =
1

kv + kof + kair
(kvVi + kof Vo

i + Fra
i + Fg) (1)

The properties of bubbles fit the swarm profile excellently: the Zerg
moved fluidly, staying close to one another without much interpen-
etration, and could climb over obstacles and each other rather eas-
ily. The simulation would query the state of the previous frame by
treating it as a point cloud to find each Zerg’s nearest neighbors,
their zstates and velocities. The target velocity was worked into the
above equation by applying it as a frictional force, to simulate the
Zergling propelling itself forward by pushing off of whatever it is
currently supported by (e.g., ground, obstacles, other Zerglings).

3 Using Volumes for Crowd Simulations

Volumes are ideally suited for particle simulations, as they have a
low overhead for accessing data such as velocity vectors and signed
distance fields. In our case of animating the swarm, volumes were
used for the same reasons. Instead of defining a list of objects that
the swarm would interact with and iterating over those elements to
find their relative locations and distances to each individual crea-
ture, we employed volumes to represent them all.

For the general direction of movement, we created a velocity field
that defines the path of the swarm through streets and around build-

∗mcordner@blizzard.com
†blabarge@blizzard.com

Figure 1: The Zerg swarm fills a city street.
c©Blizzard Entertainment, Inc. All rights reserved.

ings. For objects that the Zerglings could climb over, a signed dis-
tance field was sufficient for level ground, ramps, rubble, tanks,
and other larger creatures such as the Nydus Worm that breaches
the plaza. A fast sample of these volumes would return the distance
to the object, gradient and the normal of that element. With that
information, we could determine what the Zergling is encounter-
ing and whether or not it should climb over, go around or attack
it. “Avoidance volumes” were created to have the smaller Zerglings
avoid being stomped on by the much larger Ultralisk creatures. An-
other set of volumes were turned on and off in concert with many
of the explosions, which scatter the creatures nearest to them in all
directions.

When we reached the final shot, we noticed that Zerglings were
running through the ranks of enemy marine formations. We again
used volumes to define “kill zones,” to identify where Zerglings
were coming under fire from the marines’ rifles and the intensity of
that fire. Each Zergling inside the kill zone would check a random
function see if it should be killed and play a death animation.

4 Rendering The Swarm

Each particle from the simulation represented a single creature. For
visualization in Houdini, we instanced cached animations of a run-
ning Zerg creature onto each particle. To render final frames, the
particle data was written to RIB files and then parsed to insert the
appropriate geometry procedural calls and shaders. Loading geom-
etry at render time through the use of a procedural kept our RIB data
small, and provided flexibility to utilize different LOD models.

5 Conclusion

For animating a swarm of insect-like Zerg, we were able to create a
very fast, large-scale simulation system that demonstrated complex
behavior but was still easy to manipulate and augment by the artist.
Our use of volumes was instrumental in gathering the data neces-
sary to determine the creatures’ actions and method of interaction
with the scene.

References

H. KÜCK, C. VOGELGSANG., AND G. GREINER, 2002. Simula-
tion and Rendering of Liquid Foams. Graphics Interface (GI).


